UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC8/Revised & Old/2023

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 4th Semester Examination, 2023

CC8-MATHEMATICS

MULTIVARIATE CALCULUS

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

3

The figures in the margin indicate full marks.

GROUP-A

1. Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$
(a) Examine whether $f(x, y) = \begin{cases} xy ; (x, y) \neq (0, 0) \\ 0 ; \text{ if } (x, y) = (0, 0) \end{cases}$	3
is continuous at the origin.	
(b) State Euler's theorem for homogeneous function of two variables.	3
(c) Find the gradient of $\vec{r} + \frac{1}{\vec{r}}$ where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.	3

- (d) Find the volume under the plane z = 8x + 6y over the region 3 $R = \{(x, y): 0 \le x \le 1 \text{ and } 0 \le y \le 2\}.$
- (e) Show that for any vector \vec{a} , curl \vec{a} is a solenoidal vector.
- (f) Find the equation of the tangent plane to the surface $z = x^2 + y^2$ at the 3 point (1, 2, 5).

GROUP-B

Answer any *four* questions from the following $6 \times 4 = 24$

2. Let
$$f(x, y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} ; & x^2 + y^2 \neq 0 \\ 0 ; & \text{if } x^2 + y^2 = 0 \end{cases}$$
 6

Show that f is continuous at (0, 0) but not differentiable at (0, 0).

- 3. Find the maximum and minimum values of the function 3x + 4y on the circle $6x^2 + y^2 = 1$.
- 4. Prove that $\iiint_V \nabla \times \overline{B} \, dV = \iint_S \hat{n} \times \overline{B} \, dS$, where *V* is the volume bounded by a 6

closed surface S and \hat{n} is the positive outward drawn normal (unit) to S.

5. Prove that $r^n \vec{r}$ is irrotational. Find *n* when it is solenoidal vector. 6

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC8/Revised & Old/2023

6. Use Stoke's theorem to evaluate

$$\oint_{S} (\sin z \, dx - \cos x \, dy + \sin y \, dz)$$

where *S* is the boundary of the rectangle:

$$0 \le x \le \pi$$
, $0 \le y \le 1$ and $z = 3$

7. Evaluate the integral
$$\iint_{R} e^{(x+y)/(x-y)} dx dy$$
, where *R* is the trapezoidal region with 6 vertices (1, 0), (2, 0), (0, -2) and (0, -1).

6

GROUP-C

Answer any *two* from the following
$$12 \times 2 = 24$$

8. (a) Let $f(x, y) = \begin{cases} x^2 \sin \frac{1}{x} + y^2 \cos \frac{1}{y} ; x \neq 0, y \neq 0 \\ x^2 \sin \frac{1}{x} ; x \neq 0 \\ y^2 \cos \frac{1}{y} ; y \neq 0 \\ 0 ; x = 0 = y \end{cases}$
Prove that the both partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0, 0) but none of them is continuous at (0, 0). Also, examine the differentiability of $f(x, y)$ at (0, 0).
(b) Use Stoke's theorem, prove that
(i) curl grad $\phi = 0$, where ϕ is a scalar function.
(ii) div curl $\vec{F} = 0$, where F is a vector field.
9. (a) If E be the region bounded by the circle $x^2 + y^2 - 2ax - 2by = 0$, show that $\iint_E \sqrt{x(2a - x) + y(2b - y)} dx dy = \frac{2\pi}{3}(a^2 + b^2)^{3/2}$
(b) If $f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} , (x, y) \neq (0, 0) \\ 0 , if (x, y) = (0, 0) \end{cases}$

Show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.

- 10.(a) Find the maximum value of $f(x, y, z) = x^2 y^2 z^2$ subject to the subsidiary 6 condition $x^2 + y^2 + z^2 = c^2$ (x, y, z are positive).
 - (b) Find $\vec{\nabla}(\vec{\nabla} \cdot \vec{A})$, when $\vec{A} = \frac{\vec{r}}{r}$.
- 11.(a) If \vec{a} is a constant vector, then prove that $\operatorname{curl}(\vec{r} \times \vec{a}) = -2\vec{a}$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
 - (b) Show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \oint_C (x \, dy y \, dx)$. Hence find area of the ellipse $x = a \cos \theta$ and $y = a \sin \theta$.

-×-